

A Prospective Cross-sectional Study to Analyze the Effect of Transnasal Sphenopalatine Ganglion Block in Carcinoma Buccal Mucosa Patients

Nipun Lamba, Shikha Dhal¹, Ruchika Makkar, Sumit Goyal¹, Sudha Sarna

Department of Palliative Medicine, Mahatma Gandhi Medical College and Hospital, ¹Department of Radiation Oncology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India

Abstract

Introduction: Cancer pain is known to be one of the most severe pain anyone in life and is the primary reason for discontinuation of treatment. Sphenopalatine ganglion block (SPGB) can be useful in alleviating pain of carcinoma buccal mucosa. The study aims to analyze the effect of transnasal SPGB in pain management of patients suffering from carcinoma buccal mucosa. **Materials and Methods:** It was a hospital-based study done on 150 patients with carcinoma buccal mucosa using a prospective cross-sectional study design. To do statistical analysis, paired *t*-test was used having SPSS software. **Results:** On visual analogue scale, intensity of pain was found to be notably reduced from 7.42 ± 2.02 to 3.45 ± 1.21 ($P < 0.0001$), after first sitting. Preprocedure and postprocedure morphine requirement were 90.24 ± 30.24 and 60.42 ± 0.93 mg/day ($P > 0.05$). At the conclusion of study, the results were found to be statistically significant. **Conclusion:** Transnasal SPGB is beneficial in improving patient compliance and reducing pain scores and morphine requirement in patients suffering from carcinoma buccal mucosa.

Keywords: Carcinoma buccal mucosa, pain medicine, palliative care, sphenopalatine ganglion block

INTRODUCTION

Carcinoma buccal mucosa is a customary type of head-and-neck cancer in India due to tobacco chewing and smoking habits. It is one of the most painful conditions faced by a patient, and pain is the most common cause for desisting treatment.

It sometimes becomes difficult to control even by oral morphine and neuropathic medications.

Sphenopalatine ganglion (SPG) is also known as pterygopalatine ganglion. It is located in the pterygopalatine fossa and is a parasympathetic ganglion. It is known to play an important role in atypical facial pain. There are various techniques for sphenopalatine ganglion block like radiofrequency ablation, chemical neurolysis via coronoid approach, but we have used transnasal approach using local anesthetic for its less invasiveness and ease of patient. The sphenopalatine ganglion is a parasympathetic ganglion and

its blockage is useful in pains of facial origin.^[1] They conduct the somatic sensations of the gums, hard and soft palate, oral cavity, tonsils, and uvula.^[2]

MATERIALS AND METHODS

It was a hospital-based study done on 150 patients of carcinoma buccal mucosa using a prospective cross-sectional study design. SRCC was the designated place for the execution of the study. We executed our study after consent from the institutional ethics committee. IEC No./MGMC&H/IEC/JPR/2021/1242. The patients were suffering from carcinoma buccal mucosa and undergoing radiation oncology treatment in our institute. Appropriate history of pain was obtained and pain assessment was done, routine investigations were performed before the procedure. Patients were explained

Address for correspondence: Dr. Sumit Goyal,
Mahatma Gandhi Medical College & Hospital, Jaipur, Rajasthan, India.
E-mail: sumit_goyal012@yahoo.com

Submitted: 11-Jun-2022 Revised: 19-Jul-2022

Accepted: 26-Jul-2022 Published: 29-Dec-2022

Access this article online

Quick Response Code:

Website:
www.actamedicainternational.com

DOI:
10.4103/amit.amit_58_22

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Lamba N, Dhal S, Makkar R, Goyal S, Sarna S. A prospective cross-sectional study to analyze the effect of transnasal sphenopalatine ganglion block in carcinoma buccal mucosa patients. *Acta Med Int* 2022;9:115-7.

Table 1: Demographics

Parameter	Value
Age (mean \pm SD)	45.24 \pm 8.84
Sex (male/female)	72/28
Total number of patients	100
SD: Standard deviation	

Table 2: Visual Analog Scale score and morphine requirement

	Preprocedure	Immediately after procedure	After 3 sittings
VAS score	7.42 \pm 2.02	3.45 \pm 1.21	2.23 \pm 1.08
Morphine requirement	90.42 \pm 64.54	80.68 \pm 58.72	70.68 \pm 55.93

VAS: Visual Analog Scale

Table 3: Compliance of patients

	After 1 st sitting	After 3 sittings
Compliance of patients (%)	100	100
Comfort of patients	82/100	95/100

Table 4: Complications

Event	Number of patient's
Runny nose	8
Giddiness	5
Bleeding/trauma	0

about the procedure, and after taking informed consent from the patients, transnasal SPGB was performed. Morphine, adjuvants, and other medications were continued. Dose requirement of morphine, any occurrence of side effects, and any unforeseen effects were noted. Statistical analysis was carried out by paired *t*-test, and we have used SPSS 20 (IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.) software for the same.

Inclusion criteria

1. Patients with carcinoma buccal mucosa suffering from intensified pain (visual analog score >5)
2. When oral morphine was desisting in relief
3. Upright relief by earlier SPGB.

Exclusion criteria

1. Patients with cardiac aberration
2. Patients with underlying infection
3. Patients with coagulation ailment
4. Patients having a nasal distortion.

The patients are asked to lie down in supine with pillow to be kept under the chest to keep the neck protracted. Appropriate monitoring was attached, and patients' pulse, blood pressure, and oxygen saturation were recorded using a monitor. One milliliter of lignocaine intravenous is inculcated

in affected nostril, and the patient is asked to sniff it inside. Succeeding which a sterile cotton swab stick is taken and interposed into the affected nostril in upward and backward direction till there is a resistant is felt or maximum of 5 cm. One milliliter of 2% intravenous lignocaine is inoculated along the side of the applicator and wait for 2–3 min. The mean age of study participants was 45.24 \pm 8.84, ratio of males and females was 72/28 and total number of patients enrolled in study were 150 [Table 1]. Then, 1 ml of intravenous lignocaine is applied and it is repeated for maximum of 4–5 ml. The patient is made to lie supine for about 15 min after the procedure.

Pre- and post-procedure scores were recorded and the patient is asked for a follow-up 1 day later. Transnasal SPGB was repeated every alternate day for three sittings.

RESULTS

There was a reduction in pain score on visual analogue scale as well as on clinical examination of patient immediately after the procedure from 7.42 \pm 2.02 to 3.45 \pm 1.21 ($P < 0.0001$). After 3 sitting of sphenopalatine ganglion block the mean morphine requirement in the patients was reduced to 2.23 \pm 1.08 [Table 2].

After first sitting morphine requirement was reduced from 90.42 \pm 64.52 to 80.68 \pm 58.93 (P value >0.05) mg/day and after 3 sittings of sphenopalatine ganglion block morphine requirement was found to be reduced to 70.68 \pm 55.93 [Table 3].

There were no serious complications in any patients. Eight patients conveyed runny nose 3 days after the procedure and four developed giddiness immediately after procedure which was relieved by rest for about 15 min [Table 4].

DISCUSSION

SPGB is a utilitarian procedure for a variety of painful conditions. Its particular role in pain originating from head-and-neck cancer is of importance in palliative care. It also plays a proficient role in vasodilating and protecting the brain against various neurologic states.^[3] Ruiz-López and Erdin^[4] used radiofrequency procedures for the treatment of craniofacial pain. It was found that this procedure can be used as an alternative when pain is refractory to pharmacological therapy.^[5]

In our study, we found that SPG was helpful in alleviating pain, thus compliance to radiation treatment was improved, there was better patient contentment, and analgesics requisite for patients who received SPGB.

Among various approaches to block SPG, the subzygomatic approach ensures precise delivery of medicine and is proficient than others.^[6,7] Transnasal block can be done in mobile patients. It is usually performed by physician and nurses but patients and their relatives are also able to self-administer it at home.^[8,9] SPGB inhibits the parasympathetic activity, which inhibits vasodilation. By attenuating the

uncontrolled vasodilation, PDPH is relieved.^[9] Lignocaine soaked applier is kept for 5–10 min. Swab without coming in direct contact with ganglion infiltrates local anesthetic around it in that position. The covering around connective tissue and mucous membranes facilitates the spread and penetration of the drug.^[10,11] It is useful in managing headache and pain syndrome.^[12] SPGB is also helpful in acute migraine.^[13] In resistant pains, SPGB is an effective approach.^[14-17] Bilateral (B/L) SPG block was more advantageous in analgesic effects as compared to others.^[18]

CONCLUSION

SPGB through transnasal approach is a very less intruding and a very cost proficient technique for alleviating pain in patients suffering from carcinoma buccal mucosa undergoing radiation treatment.

Early referral to pain and palliative care department reduces morbidity, improves treatment compliance, and thus results in better holistic care of the patient.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Channabasappa SM, Manjunath S, Bommalingappa B, Ramachandra S, Banuprakash S. Transnasal sphenopalatine Ganglion block for treatment of postural headache following spinal anesthesia. Saudi J Anaesth 2017;11:362-3.
- Piagkou M, Demesticha T, Troupis T, Vlasis K, Skandalakis P, Makri A, *et al.* The pterygopalatine ganglion and its role in various pain syndromes: From anatomy to clinical practice. Pain Pract 2012;12:399-412.
- Oluigbo CO, Makonnen G, Narouze S, Rezai AR. Sphenopalatine ganglion interventions: Technical aspects and application. Prog Neurol Surg 2011;24:171-9.
- Ruiz-López R, Erdine S. Treatment of crano-facial pain with radiofrequency procedures. Pain Pract 2002;2:206-13.
- Sanders M, Zuurmond WW. Efficacy of sphenopalatine ganglion blockade in 66 patients suffering from cluster headache: A 12- to 70-month follow-up evaluation. J Neurosurg 1997;87:876-80.
- Stechison MT, Brogan M. Transfacial transpterygomaxillary access to foramen rotundum, sphenopalatine ganglion, and the maxillary nerve in the management of atypical facial pain. Skull Base Surg 1994;4:15-20.
- Chen Z, Zhao Z, Li M, Yang Y. Clinical significance of trigeminal neuralgia treated using radiofrequency thermocoagulation (RFT) with different approaches. Hua Xi Kou Qiang Yi Xue Za Zhi 2001;19:240-2.
- Furtado IF, Pinto MM, Amorim P. Sphenopalatine ganglion block may be an efficient treatment of headache after lumboperitoneal shunt placement: A case report. A A Pract 2019;12:4012.
- Davies JM, Murphy A, Smith M, O'Sullivan G. Subdural haematoma after dural puncture headache treated by epidural blood patch. Br J Anaesth 2001;86:720-3.
- Nair AS, Rayani BK. Sphenopalatine ganglion block for relieving post dural puncture headache: Technique and mechanism of action of block with a narrative review of efficacy. Korean J Pain 2017;30:93-7.
- Schaffer JT, Hunter BR, Ball KM, Weaver CS. Noninvasive sphenopalatine ganglion block for acute headache in the emergency department: A randomized placebo-controlled trial. Ann Emerg Med 2015;65:503-10.
- Matthew Robbins S, Carrie Robertson E, Eugene K, Jessica A, Larry C, Deena K, *et al.* The sphenopalatine ganglion: Anatomy, pathophysiology, and therapeutic targeting in headache. Headache 2016;56:240-58.
- Obah C, Fine PG. Intransal sphenopalatine ganglion block: Minimally invasive pharmacotherapy for refractory facial and headache pain. J Pain Palliat Care Pharmacother 2006;20:57-9.
- Peterson JN, Schames J, Schames M, King E. Sphenopalatine ganglion block: A safe and easy method for the management of orofacial pain. Cranio 1995;13:177-81.
- Saberski L, Ahmad M, Wiske P. Sphenopalatine ganglion block for treatment of sinus arrest in postherpetic neuralgia. Headache 1999;39:42-44.
- Shah RV, Racz GB. Long-term relief of posttraumatic headache by sphenopalatine ganglion pulsed radiofrequency lesioning: A case report. Arch Phys Med Rehabil 2004;85:1013-6.
- Mojica J, Mo B, Ng A. Sphenopalatine ganglion block in the management of chronic headaches. Curr Pain Headache Rep 2017;21:27.
- Stalls C, Zatoc hill M, Petersen TR, Falcon RJ, Al Haddadin C, Southwell B, *et al.* Transnasal sphenopalatine ganglion block for postdural puncture headache in an adolescent: A case report. A A Pract 2019;13:185-7.