Assessment of Functional Status and Mental Health in Post-COVID-19 Patients in a Dedicated COVID-19 Hospital in Maharashtra: A Cross-sectional Study

Gauri Bharadwaj1,2,3, Lalit Sankhe2, Shubhendra Bharadwaj4

¹Department of Community Medicine, Teerthanker Mahaveer Medical University, Moradabad, ⁴Department of Pharmacology, Lala Lajpat Rai Medical College, Meerut, Uttar Pradesh, ²Department of Community Medicine, Grant Government Medical College and JJ Group of Hospitals, ³Department of Community Medicine, Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai, Maharashtra, India

Abstract

Introduction: The COVID-19 pandemic has resulted in prolonged health challenges for many survivors, often termed long COVID-19. These challenges include persistent physical symptoms such as fatigue and breathlessness, alongside mental health issues such as depression, anxiety, and stress. **Materials and Methods:** A cross-sectional study was conducted among 114 post-COVID-19 patients admitted to a dedicated COVID-19 hospital in Mumbai. Functional limitations were evaluated using the Post-COVID-19 Functional Status scale, while the Depression, Anxiety, and Stress Scale measured mental health outcomes. Data analysis was done using Chi-square tests and multiple linear regressions to explore the relationship between functional and mental health metrics. **Results:** The study found that 16.7% of patients had no functional limitations, while 42.1% experienced minimal limitations. Severe functional limitations were reported by 13.2% of patients. Mental health analysis showed that 23.68% had mild-to-severe depression, with anxiety and stress affecting 21.1% and 14.04%, respectively. Regression analysis revealed significant associations between functional limitations and mental health, with depression (P < 0.001) having the most substantial impact, followed by anxiety and stress. **Conclusion:** Post-COVID-19 patients in Maharashtra face significant functional and psychological challenges, with depression being the most influential factor in delaying recovery. These findings highlight the need for integrated physical and mental health interventions in post-COVID-19 care.

Keywords: Anxiety, depression, post-COVID-19 functional scale, stress

INTRODUCTION

The COVID-19 pandemic, driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a sharp rise in pneumonia cases and multi-organ complications, posing significant challenges to healthcare systems worldwide, particularly in acute care hospitals, emergency departments, and intensive care units (ICUs). Studies indicate that approximately 60% of COVID-19 survivors experience post-COVID-19 symptoms within the first 6 months postinfection, with fatigue and breathlessness being the most prevalent. However, many patients report persistent physical symptoms without evidence of lasting physiological damage. Following recovery, the severity of functional limitations among survivor's ranges

 Submitted: 25-Sep-2024
 Revised: 01-Apr-2025

 Accepted: 02-Apr-2025
 Published: 30-Apr-2025

Quick Response Code:

Access this article online

Website: http://journals.lww.com/amit

DOI

10.4103/amit.amit_122_24

from mild to severe, influenced by factors such as age, gender, symptom duration, and comorbidities. [4] COVID-19 symptoms can persist for up to 35 days, adversely affecting quality of life as well as physical and mental health. [5,6] Survivors often experience moderate-to-severe physical impairments and psychological challenges, including depression, anxiety, and posttraumatic stress disorder. [7,8] In India, morbidity and mortality rates from COVID-19 have been strongly associated with comorbid conditions such as diabetes, hypertension, and cardiovascular disease. [9-11] Among older adults, post-COVID-19 recovery

Address for correspondence: Dr. Gauri Bharadwaj, J-6 Navin Shahdara, New Delhi - 110 032, India. E-mail: gauribharadwaj123456@gmail.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Bharadwaj G, Sankhe L, Bharadwaj S. Assessment of functional status and mental health in post-COVID-19 patients in a dedicated COVID-19 hospital in Maharashtra: A cross-sectional study. Acta Med Int 2025;12:33-7.

is often linked to heightened risks of anxiety and depression, although many return to their preinfection functional status within 90 days.[12] Rehabilitation is essential in aiding older patients to regain functional abilities.[13] The Post-COVID-19 Functional Status (PCFS) Scale serves as a crucial tool for evaluating functional limitations in survivors, particularly in acute healthcare settings, and informs rehabilitation planning.[14] Beyond physical issues, survivors frequently face social isolation, anxiety, and stigma, exacerbating mental health struggles.[15] These challenges contribute to reduced functional status, including difficulties in daily activities, mobility, and social or occupational engagement.[16,17] Long COVID-19, also known as post-COVID-19 condition, refers to a range of symptoms that persist or develop after the acute phase of a SARS-CoV-2 infection. According to the World Health Organization (WHO), it is characterized by symptoms that continue or emerge 3 months after the initial infection, lasting for at least 2 months without an alternative explanation. [18] Thus, there is an urgent need for robust research and clinical interventions aimed at rehabilitating functional status, coupled with enhanced communication across healthcare sectors to support autonomy and well-being in COVID-19 survivors.[19]

MATERIALS AND METHODS Study design

This was a cross-sectional study aimed at assessing the functional and mental health status of post-COVID-19 patients. The PCFS scale^[14] was used to evaluate functional limitations, while the Depression, Anxiety, and Stress Scale (DASS-21)[20] was employed to measure mental health outcomes, including anxiety, depression, and stress levels. Study Setting - The study was conducted in a dedicated COVID-19 hospital located in Mumbai, Maharashtra. Participants were selected from patients who had been admitted to the hospital during the COVID-19 pandemic. Recruitment focused on ensuring diverse representation from various socioeconomic and demographic backgrounds within the hospital's patient population. Sample Size – The required sample size was calculated using Cochrane's formula, assuming a prevalence rate of 30%, [21] a margin of error of 10%, and a confidence interval (CI) of 95%. This resulted in a sample size of 114 participants. Participants were recruited using purposive sampling, and all individuals provided written informed consent. Only patients aged 18 years and older, previously admitted for COVID-19 treatment, and willing to participate were included. Exclusion criteria comprised patients with severe clinical presentations requiring ICU admission, antenatal and postnatal women, and individuals under 18 years of age. The procedure followed a systematic approach to recruit participants, collect data, and analyze the findings which were as follows:-

Participant recruitment

Eligible participants were identified from hospital records of patients previously admitted for COVID-19 treatment. Patients meeting the inclusion criteria were contacted and invited to participate. Informed consent was obtained from all

participants after explaining the study objectives, procedures, and confidentiality measures.

Data collection

Demographic and Clinical Data: Each participant provided details such as age, gender, socioeconomic status, comorbidities, and severity of COVID-19 illness. Functional Health Assessment: The PCFS scale was administered to assess functional limitations. Participants were classified into different levels based on their ability to perform daily activities. Mental Health Assessment: The DASS-21 was used to measure psychological distress, including symptoms of depression, anxiety, and stress. Participants responded to a self-reported questionnaire. The assessments were conducted through telephonic interview setting, ensuring privacy and minimizing external influences.

Ethical considerations

The study was approved by the Hospital's Ethics Committee. Participation was voluntary, and participants had the right to withdraw at any stage without consequences. Confidentiality was maintained by anonymizing data and securely storing records.

Statistical analysis

Data were analyzed using SPSS software (version 20) (IBM Corp., Armonk, NY, USA). Descriptive statistics, including frequencies and percentages, were used to summarize demographic characteristics. To assess differences in functional status categories measured by the PCFS scale, [14] a Chi-square test was performed. For mental health outcomes assessed using the DASS-21, [21] the prevalence of depression, anxiety, and stress was categorized into different severity levels. Chi-square tests were conducted to evaluate the significance of these distributions.

To explore the relationship between PCFS and mental health outcomes, a stepwise multiple linear regression analysis was conducted.

RESULTS

The study had an equal gender representation, with 50% male and 50% female participants [Table 1]. The majority of respondents, 41 (37%), were aged between 20 and 30 years [Table 1]. Among the participants, 66 (57.9%) were married, and 47 (41.2%) had completed formal education

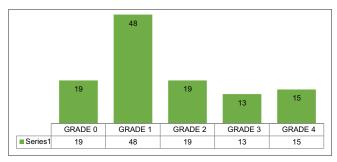


Figure 1: Distribution according to post-COVID-19 functional status scale

up to high school. Most participants, 57 (50%), belonged to the upper-middle class, according to the Kuppuswamy socioeconomic scale. In addition, 40 (35%) of the participants were professionals.

Patients were graded from 0 to 4 on the PCFS scale [Table 2]. Of the participants, 19 (16.7%) had no functional limitations

Table 1: Demographic details	
	п (%)
Age group (years)	
20–30	41 (37)
31–40	52 (47)
41–50	21 (18.4)
Sex	
Male	57 (50)
Female	57 (50)
Marital status	
Married	66 (57.9)
Unmarried	48 (42.1)
Education	
High school	47 (41.2)
Graduate	32 (28.1)
Postgraduate	35 (30.7)
Occupation	
Professional	40 (35)
Semi-professional	23 (20.17)
Clerical	6 (5.2)
Skilled	2 (1.75)
Unskilled	3 (2.63)
Unemployed/retired	40 (35)
Socioeconomic Scale	
Upper	3 (2.63)
Upper middle	57 (50)
Lower middle	31 (27.19)
Upper lower	21 (18.4)
Lower	2 (1.7)

and scored 0, indicating no symptoms, pain, depression, or anxiety related to their infection. A total of 48 (42.1%) were graded as 1, with negligible functional limitations; they reported persistent symptoms but could perform all usual activities. Grade 2 was assigned to 19 (16.7%) participants who occasionally needed to reduce or spread out their activities due to symptoms, indicating slight limitations. Grade 3 included 13 (11.4%) participants who could not perform all usual duties independently, showing moderate limitations. Finally, 15 (13.2%) were graded 4, indicating severe functional limitations, requiring assistance or nursing care [Figure 1]. A Chi-square test indicated a significant distribution difference across PCFS grades ($\chi^2 = 36.0$, P = 0.00).

According to the DASS-21 scale [Table 3], 70 (61.4%) participants showed no depression postdischarge. However, 27 (23.68%) had mild, 10 (8.7%) moderate, 2 (1.75%) severe, and 5 (4.38%) extremely severe depression. Symptoms included feelings of worthlessness, lack of enthusiasm, and life being meaningless. For anxiety, 90 (78.9%) participants reported no symptoms, while 11 (9.64%) had mild, 8 (7.01%) moderate, 1 (0.87%) severe, and 4 (3.50%) extremely severe anxiety [Figure 2]. Participants reported physical symptoms such as dry mouth, rapid heartbeat, and panic. Regarding stress, 98 (85.96%) participants had no symptoms, while 9 (7.89%) had mild, 3 (2.63%) moderate, 3 (2.63%) severe, and 1 (0.87%) extremely severe stress, reporting difficulty in relaxation and overreacting to situations. The findings reveal a significant prevalence of mild-to-severe depression, anxiety, and stress (P = 0.00).

A stepwise multiple linear regression analysis [Table 4] found PCFS to be significantly associated with stress (B = 0.559, CI: 0.211–0.908, P = 0.002), anxiety (B = 0.407, CI: 0.148–0.667, P < 0.001), and depression (B = 0.637, CI: 0.363–0.910, P < 0.001). Depression accounted for 16% of the variance in functional status, followed by stress (8.3%) and anxiety (7.9%), as indicated by the adjusted R^2 values.

Table 2: Post-COVID-19 Functional Scale[14]					
How much are you currently affected in your everyday life by COVID-19 (please indicate which one of the following statements applies to the most)	Corresponding PCFS scale	Interpretation	Distribution of population, n (%)	Р	χ²
I have no limitations in my everyday life and no symptoms, pain, depression, or anxiety related to the infection	0	No functional limitations	19 (16.67)	0.00	36.0
I have negligible limitations in my everyday life as I can perform all usual duties/activities, although I still have persistent symptoms, pain, depression, or anxiety	1	Negligible functional limitations	48 (42.1)		
I suffer from limitations in my everyday life as I occasionally need to avoid or reduce usual duties/activities or need to spread this over time due to symptoms, pain, depression, or anxiety. I am, however, able to perform all activities without any assistance	2	Slight functional limitations	19 (16.7)		
I suffer from limitations in my everyday life as I am not able to perform all usual duties/activities due to symptoms, pain, depression, or anxiety. I am, however, able to take care of myself without any assistance	3	Moderate functional limitations	13 (11.4)		
I suffer from severe limitations in my everyday life: I am not able to take care of myself and, therefore, I am dependent on nursing care and/or assistance from another person due to symptoms, pain, depression, or anxiety	4	Severe functional limitations	15 (13.2)		

PCFS: Post-COVID-19 Functional Status

DISCUSSION

The PCFS scale, developed by Klok *et al.*,^[14] is a straightforward tool for tracking symptoms and their impact on functional status in COVID-19 survivors. It encompasses a broad range of functional outcomes, categorizing limitations and lifestyle changes into five grades (0–4). In our study, 19 participants (16.67%) reported no functional limitations post-COVID-19 recovery, while 48 (42.1%) had negligible functional limitations. These findings align with Pant *et al.*,^[22] where over half of the patients (56.6%) had no functional limitations (grade 0), with 43.4% showing some level of limitation (grades: 1–4). However, our results differ from Sepulveda-Loyola *et al.*,^[23] who observed higher functional limitations, likely due to different study settings and populations.

Regarding mental health, 98 participants (85.96%) reported no stress symptoms, 90 (78.9%) had no anxiety, and 70 (61.4%) reported no depression on the DASS-21 scale. These results are consistent with Datar and Shetty^[24] and Raza

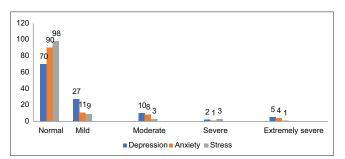


Figure 2: Distribution according to Depression, Anxiety, and Stress Scale

Table 3: Depression, Anxiety, and Stress Scale-21 to assess depression, anxiety, and stress ^[20]							
Category	Depression, n (%)	Anxiety, n (%)	Stress, n (%)	χ^2	P		
Normal	70 (61.4)	90 (78.9)	98 (85.96)	24.58	0.00		
Mild	27 (23.68)	11 (9.6)	9 (7.89)				
Moderate	10 (8.7)	8 (7.01)	3 (2.63)				
Severe	2 (1.75)	1 (0.87)	3 (2.63)				
Extremely severe	5 (4.38)	4 (3.5)	1 (0.87)				

et al.^[25] where mild depression and anxiety were prevalent, but stress was negligible. Conversely, Swami et al.^[26] found higher frequencies of anxiety (50.9%), stress (37.3%), and depression (27.2%) in a larger sample. Differences in findings could stem from variations in population characteristics, as noted by Lusida et al.,^[27] who reported shifts in mental health symptoms pre- and postquarantine.

Our linear regression analysis revealed a significant positive association between PCFS and mental health parameters (stress. depression, and anxiety). This aligns with Wang et al., [28] who highlighted the role of psychological factors in post-COVID-19 conditions and daily life impairments. Similarly, Uygur and Uygur^[29] identified female gender and high DASS-21 scores as predictors of post-COVID-19 fatigue. Seighali et al.[21] found a 23% prevalence of depression and anxiety among post-COVID-19 patients in a systematic review. Comparatively, Xiong et al.[30] reported elevated rates of psychological distress during the pandemic and influenced by factors such as unemployment and media exposure. Gasnier et al.[31] observed that patients with psychiatric disorders reported longer COVID-19 symptoms, including higher suicide risk. These variations may result from differences in geographical and study settings. A notable limitation of our study was the constrained timeline, which required accommodating participants' work and family commitments.

Conclusion

Stress, anxiety, and depression all play a significant role in predicting PCFS, with depression emerging as the most influential factor. It accounts for a larger share of the variance (16.0%) compared to stress (8.3%) and anxiety (7.9%) and has the highest standardized coefficient (B = 0.637). This indicates that depression exerts a more profound effect on post-COVID-19 functional recovery than the other psychological factors. Therefore, early detection and tailored mental health interventions are essential for improving functional outcomes in individuals recovering from COVID-19.

Ethical approval

The study was conducted in accordance with the ethical

Table 4: M	ultiple linear regres	sion between Pos	st-COVID	Functional So	ale and	Depression,	Anxiety, and	Stress	Scale-21
Dependent variable	Predictor	Unstandardized coefficients (B)	SE	Standardized coefficients	T	Significant	95% CI for <i>B</i>	R ²	Adjusted <i>R</i> ²
PCFS	Model 1: Stress								
	Constant	0.691	0.143	-	4.840	< 0.001	0.408 – 0.974		
	Stress	0.559	0.176	0.288	3.178	0.002	0.211 - 0.908	0.083	0.075
	Model 2: Anxiety								
	Constant	0.644	0.149	-	4.326	< 0.001	0.349-0.939		
	Anxiety	0.407	0.131	0.282	3.107	0.002	0.148-0.667	0.079	0.071
	Model 3: Depression								
	Constant	0.593	0.140	-	4.243	< 0.001	0.316-0.870		
	Depression	0.637	0.138	0.400	4.614	< 0.001	0.363-0.910	0.160	0.152

CI: Confidence interval, SE: Standard error, PCFS: Post-COVID-19 Functional Status

standards outlined in the Declaration of Helsinki. Approval was obtained from the Institutional Ethics Committee (IEC) before the commencement of the study, ensuring that all procedures adhered to the guidelines for medical research involving human subjects. Letter number IEC/Pharm/RP/627/OCT/2021.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Deriba BS, Geleta TA, Beyane RS, Mohammed A, Tesema M, Jemal K. Patient satisfaction and associated factors during COVID-19 pandemic in North Shoa health care facilities. Patient Prefer Adherence 2020;14:1923-34.
- Fernández-de-Las-Peñas C, Palacios-Ceña D, Gómez-Mayordomo V, Florencio LL, Cuadrado ML, Plaza-Manzano G, et al. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: A systematic review and meta-analysis. Eur J Intern Med 2021;92:55-70.
- 3. Löwe B, Toussaint A, Rosmalen JG, Huang WL, Burton C, Weigel A, *et al.* Persistent physical symptoms: definition, genesis, and management. The Lancet. 2024;403:2649-62.
- Mohamed Hussein AR, Galal I, Saad MM, Zayan HE, Abdelsayed MZ, Moustafa MM, et al. post-COVID-19 functional status: Relation to age, smoking, hospitalization, and comorbidities. Ann Thoracic Medicine. 2021;16:260-5.
- Todt BC, Szlejf C, Duim E, Linhares AO, Kogiso D, Varela G, et al. Clinical outcomes and quality of life of COVID-19 survivors: A followup of 3 months post hospital discharge. Respir Med 2021;184:106453.
- Jacobs LG, Gourna Paleoudis E, Lesky-Di Bari D, Nyirenda T, Friedman T, Gupta A, et al. Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PLoS One 2020;15:e0243882.
- Dubey S, Biswas P, Ghosh R, Chatterjee S, Dubey MJ, Chatterjee S, et al. Psychosocial impact of COVID-19. Diabetes Metab Syndr 2020;14:779-88.
- Dryhurst S, Schneider CR, Kerr J, Freeman AL, Recchia G, Van der Bles AM, et al. Risk perceptions of COVID-19 around the world. J Risk Res 2020;23:994-1006.
- Gupta R, Hussain A, Misra A. Diabetes and COVID-19: Evidence, current status and unanswered research questions. Eur J Clin Nutr 2020;74:864-70. Available from: https://www.nature.com/articles/ s41430-020-0652-1. [Last accessed on 2025 Apr 01].
- Singh AK, Gupta R, Misra A. Comorbidities in COVID-19: Outcomes in hypertensive cohort and controversies with renin angiotensin system blockers. Diabetes Metab Syndr 2020;14:283-7.
- Gopalan HS, Misra A. COVID-19 pandemic and challenges for socioeconomic issues, healthcare and national health programs in India. Diabetes Metab Syndr 2020;14:757-9.
- Sathyamurthy P, Madhavan S, Pandurangan V. Prevalence, pattern and functional outcome of post COVID-19 syndrome in older adults. Cureus 2021;13:e17189.
- Herrmann ML, Hahn JM, Walter-Frank B, Bollinger DM, Schmauder K, Schnauder G, et al. COVID-19 in persons aged 70+ in an early affected German district: Risk factors, mortality and post-COVID care needs-A retrospective observational study of hospitalized and non-hospitalized patients. PLoS One 2021;16:e0253154.
- 14. Klok FA, Boon GJAM, Barco S, Endres M, Geelhoed JJM, Knauss S,

- et al. The Post-COVID-19 Functional Status scale: A tool to measure functional status over time after COVID-19. Eur Respir J 2020 Jul 1;56(1):2001494. doi:10.1183/13993003.01494-2020.
- Grover S, Dua D, Sahoo S, Mehra A, Nehra R, Chakrabarti S. Why all COVID-19 hospitals should have mental health professionals: The importance of mental health in a worldwide crisis! Asian J Psychiatr 2020;51:102147.
- Li LQ, Huang T, Wang YQ, Wang ZP, Liang Y, Huang TB, et al. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol 2020;92:577-83.
- Leidy NK. Functional status and the forward progress of merry-gorounds: Toward a coherent analytical framework. Nurs Res 1994;43:196-202
- Al-Jabr H, Windle K, Clifton A, Thompson DR, Castle DJ, Ski CF.
 Patient experiences of the Long COVID—Optimal Health Programme: a qualitative interview study in community settings. BJGP open 2024;8.
- Marques A. Functional status in the COVID-19 era: ALERT, ALERT, ALERT! Pulmonology 2021;27:481-3.
- Henry JD, Crawford JR. The short-form version of the Depression Anxiety Stress Scales (DASS-21): Construct validity and normative data in a large non-clinical sample. Br J Clin Psychol 2005;44:227-39.
- Seighali N, Abdollahi A, Shafiee A, Amini MJ, Teymouri Athar MM, Safari O, et al. The global prevalence of depression, anxiety, and sleep disorder among patients coping with post COVID-19 syndrome (long COVID): A systematic review and meta-analysis. BMC Psychiatry 2024;24:105.
- Pant P, Joshi A, Basnet B, Shrestha BM, Bista NR, Bam N, et al. Prevalence of functional limitation in COVID-19 recovered patients using the post COVID-19 functional status scale. J Nepal Med Assoc 2021;59:7-11.
- Sepulveda-Loyola W, Panont AG, Maluf JC, Probst VS, Bezerra LO, da Rocha Rodrigues L, et al. Clinical, physical, and psychological outcomes among individuals with post COVID-19 syndrome with different functional status: a cross-sectional study. Salud, Ciencia y Tecnología. 2024;4:802.
- Datar MC, Shetty JV. Depression anxiety and stress in patients visiting medicine outpatient department of tertiary care hospital during COVID pandemic. Ann Indian Psychiatry 2022;6:82-5.
- Raza MR, Shahid R, Umar M, Zeb S, Ambreen S, Ahmed M. Assessment of depression, anxiety and stress among COVID-19 patients by using DASS 21 scales. J Med Case Rep Rev 2020;3:678-82.
- Swami MK, Mahal P, Arora IK, Mishra VC, Panda TK, Nebhinani N, et al. Psychiatric morbidity among patients attending the post-COVID clinic and its association with hematological inflammatory markers. Asian J Psychiatr 2022;78:103293.
- Lusida MA, Salamah S, Jonatan M, Syamlan AT, Bandem IK, Rahmania AA, et al. The impact of facilitated quarantine on mental health status of non-severe COVID-19 patients. Disaster Med Public Health Prep 2022;16:1751-2.
- Wang S, Quan L, Chavarro JE, Slopen N, Kubzansky LD, Koenen KC, et al. Associations of depression, anxiety, worry, perceived stress, and loneliness prior to infection with risk of post-COVID-19 conditions. JAMA Psychiatry 2022;79:1081-91.
- Uygur OF, Uygur H. Association of post-COVID-19 fatigue with mental health problems and sociodemographic risk factors. Fatigue Biomed Health Behav 2021;9:196-208.
- Xiong J, Lipsitz O, Nasri F, Lui LM, Gill H, Phan L, et al. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J Affect Disord 2020;277:55-64.
- Gasnier M, Choucha W, Radiguer F, Faulet T, Chappell K, Bougarel A, et al. Comorbidity of long COVID and psychiatric disorders after a hospitalisation for COVID-19: a cross-sectional study. Journal of Neurology, Neurosurgery & Psychiatry. 2022;93:1091-8.